История науки — тысячеактная драма. Драма не только идей, но и их творцов.
На памятниках, барельефах, мемориальных досках ученые всегда кажутся чуждыми суете и страданиям. Но до того, как их лики застыли в бронзе или граните, им были ведомы и печаль и отчаяние; все они были самыми обычными смертными; только одареннее и ранимее. И тернии, всегда устилающие дорогу к пьедесталам, ранили их ничуть не меньше, чем всех остальных людей; только раны их были невидимы миру.
Что поделать, такова стезя науки: мы видим ученых лишь в редкие моменты их славы — когда их венчают наградами, когда, собственно, работа уже закончена и результат ее оценен обществом; а вот в те — не мгновения даже, нет, — в те месяцы и годы, что творят они в своих лабораториях, их действия, их мысли, их надежды скрыты от нас; тогда они — схимники человечества, принявшие добровольный и нигде не писанный обет отрешенности.
Через сто лет после того как в Англии были опубликованы «Начала» Ньютона, на другом конце Европы, в Италии, в городе Болонье, знаменитом своим университетом, у тамошнего профессора анатомии простудилась жена. Эти события, разделенные целым веком, безусловно разного масштаба: о первом сразу же узнала вся Европа, а о втором… впрочем, о втором Европа тоже узнала, только через год.
Нас, правда, больше интересует не жена профессора, хотя легенда и приписывает ей известную роль в происшедших событиях и даже неким итальянским поэтом был сочинен в ее честь сонет, в котором эта роль всячески подчеркивалась. Нас интересует сам профессор, в то время тридцатилетний медик, уже восемь лет занимающий кафедру анатомии в родном университете. Может заинтересовать нас и город, в котором он родился, учился и работал и который сами итальянцы называли «Bologna La Grassa» и «Bologna La Dotta» — «жирная Болонья» и «ученая Болонья».
Интересно, что даже здесь, во взаимоотношениях не с научными истинами, а с судьбой, Гальвани и Вольта вновь оказались антиподами. Вольта, также итальянец, как и Гальвани, признал Наполеона и был осыпан почестями, которых, конечно, был достоин, но не меньше, чем Гальвани. Вместе с тем у Вольты было больше, чем у Гальвани, поводов отвратиться от завоевателя. Ведь именно в Павии, а не в Болонье Бонапарт расстрелял без суда и следствия весь муниципалитет; ведь именно здесь местное население, не выдержав бесконечных грабежей и убийств, восстало против оккупантов, за что было основательно побито. И все же Вольта, видевший все это своими глазами, посчитал возможным принять из рук, обагренных кровью итальянцев, и деньги, и ордена, и прочие регалии славы. Может быть, он был загипнотизирован словами Бонапарта о том, что он, мол, несет свободу Италии, находившейся до этого под игом Австрии? Но какую свободу — под французским игом? Правда, Франция стала недавно республикой, и приход республиканской армии, свергающей монархию и насаждающей новые республиканские институты на завоеванных землях, мог показаться кому-то желанным. И, может быть, Вольта принадлежал к этим недальновидным и доверчивым людям. А Гальвани, старше и умудреннее, не дал себя обмануть красивыми, но пустыми словами.
В предыдущей главе Школярик говорил, что Джозеф Бэнкс, получив письмо Вольты, показал его до официального оглашения нескольким своим друзьям. Ну, вот отсюда все и начинается.
Снова Англия, родина закона всемирного тяготения. Первый год XIX столетия. Руке еще не привычно писать эти цифры — 1800. Но идут месяцы, все больше поводов для этого представляется ученым. Вот и 30 апреля 1800 года происходит случай, который был запечатлен для истории двумя английскими учеными, вызвавшими к жизни новое необычное явление.
Один из них — врач Антони Карлейл. Ему тридцать два года, он еще не очень известен, у него все еще впереди — вскоре он станет знаменитым хирургом. Его другу Вильяму Никольсону сорок семь лет, у него если не все уже позади, то многое: он был чиновником Ост-Индийской компании, разъездным комиссионером, директором училища, инженером; потом наконец поселился в Лондоне и стал издателем журнала, где печатались в числе прочих статьи по физике.
Рассказывать подробно историю электрохимии значило бы выйти за рамки нашей рубрики; но и нельзя не сказать ничего о продолжателях Никольсона и Карлейла; поэтому я остановлюсь лишь на нескольких эпизодах, связанных с исследованиями Хэмфри Дэви и Майкла Фарадея. Выбор обусловлен не только тем, что при этом можно будет не покидать Англию; Дэви — учитель Фарадея, их взаимоотношения в жизни и науке весьма интересны и поучительны.
И хотя в открытиях Дэви и Фарадея не было ничего случайного, они все же имеют отношение к нашему повествованию, так как ясно очерчивают границу, отделяющую случайное и не понятое наблюдение от знания, добытого напряженным трудом. Пожалуй, это единственный пример, где так наглядно видно, что может упустить ученый, не знающий истинной цены случаю, легкомысленно относящийся к находкам в работе и поэтому так же легко и теряющий их.
Если бы небо захотело лишить мир дальнейшей пользы, приносимой его оригинальными опытами и колоссальным трудолюбием, то того, что он уже совершил, было бы достаточно, чтобы поставить его в один ряд с величайшими научными деятелями страны".
Это мнение соотечественника и современника; может быть, он несколько пристрастен? Но вот что писал о Дэви академик В.И. Вернадский: «Хэмфри Дэви — блестящий экспериментатор, физик и химик, охватывающий всю науку своего времени, мыслитель, шедший своим путем и задумывавшийся над проблемами бытия, одаренный глубоким поэтическим пониманием природы, — является одной из самых ярких фигур первой половины столь богатого ими XIX столетия. Дэви оказал огромное влияние на науку своего времени своими лекциями, многочисленными статьями и книгами, блестящими опытами».
В августе 1820 года все более или менее известные европейские физики, все научные общества и редакции физических журналов получили небольшую, писанную по-латыни брошюру. На обложке стояло ничего не говорящее название «Опыты по влиянию электрического тока на магнитную иглу» и мало что говорящая фамилия автора — Эрстед.
Если бы каждый из ученых мог знать, что, кроме него, эту же брошюру держат в руках практически все европейские физики, ее стали бы читать тут же, как только вскрыли конверт. Потому что необычный способ информации означать мог только одно: случилось что-то необыкновенное,
А необыкновенное и впрямь случилось. Причем необыкновенным здесь было все: и само открытие, и то, как оно было сделано, и даже то, что ничего необыкновенного в нем, как тут же выяснилось, не было.
Меж тем и другие ученые занялись разработкой открытия Эрстеда, и 25 сентября, после выступления Ампера, слово взял Франсуа Араго и рассказал, что ему, так же как и его ученому товарищу, удалось обнаружить нечто новое. «Когда я соединил длинной медной проволокой два полюса вольтова столба, — сказал Араго, — и опустил потом ее в железные опилки, то она притянула их, как если бы была настоящим магнитом. Когда ток размыкался, опилки опадали. Таким образом, — с гордостью закончил Араго, — мне удалось даже намагнитить швейную иглу».
Присутствовавший тут же Ампер заметил, что намагничивание металлических предметов можно усилить еще более, если взять провод в виде спирали, как это делал он, и вставить иглу внутрь.
Научные склонности Ампера проявились довольно рано. О ботанических я уже говорил, позже к ним прибавились математические. Еще в тринадцать лет он представил в Лионскую академию сочинение о квадратуре круга — ему показалось, что он нашел решение старинной задачи о построении квадрата, равного по площади кругу, над которой безрезультатно бились такие титаны, как Архимед, Гюйгенс, Ньютон. В двадцать семь лет он опубликовал в Лионе сочинение по теории вероятностей. Называлось оно «Соображения о математической теории игры». Любопытно, из каких личных соображений взялся Андре именно за эту тему? Сама по себе она очень интересна и актуальна даже на сегодняшний день. Ею занимались в разное время многие математики из склонностей чисто теоретических, а не математики — из склонностей чисто практических. Дело в том, что она в какой-то мере давала ключ к пониманию карточных и прочих азартных игр, где выигрыш зависит не от умения, а от удачи.
Поздний вечер 2 января 1896 года. В редакции венской газеты «Нейе фрейе прессе» («Новая свободная пресса») заканчивается обычный рабочий день. Газетные полосы сверстаны, подписаны в печать, отправлены в типографию. Еще несколько часов — и разносчики побегут по улицам, выкрикивая заголовки основных статей.
Однако не суждено было этим статьям увидеть свет ранним утром 3 января. Совсем иное будут выкрикивать продавцы газет, удивляясь небывалому спросу.
Когда ротационные машины уже начали печатать тираж, в типографию позвонил главный редактор и взволнованным голосом приказал остановить машины и освободить первую полосу — сейчас будет прислан новый материал. Нетрудно представить себе переполох в типографии. Уж не война ли качалась? Подобные замены, связанные с нервотрепкой и добавочными расходами, делались лишь в исключительных случаях. А что произошло сегодня, какой материал пришлют из редакции взамен снятого?
Открытие Рентгена вызвало, как я уж говорил, огромный резонанс, и мало какое другое открытие так быстро нашло практическое применение. Еще не выветрился запах типографской краски в брошюрах Рентгена, переведенных на многие языки, измученные репортеры еще не потеряли надежды пробиться в дом № 8 по Плехеринг (теперь эта улица называется Рентгенринг), еще раздавались в разных лабораториях возгласы: «Господи, как же это я проморгал!», — а в Америке, в городе Дортмуте, 20 января 1896 года с помощью рентгеновских лучей врачи впервые увидели перелом руки человека. Звали его Эдди Мак-Карти. Бедняга Эдди, он попал в странную ситуацию; с одной стороны, ему явно не повезло — перелом руки не шутка, с другой — ему повезло, что сразу был поставлен верный диагноз, а с третьей… разве думал он когда-нибудь, что его имя войдет в историю, пусть даже таким болезненным образом, но — в историю! Его имя склоняли в газетах, он стал модной фигурой в своем городе, и все из-за того, что за два с половиной месяца до того, как его угораздило упасть, какого-то немецкого физика угораздило ночью пойти поработать.
И в самом деле — что?
Задайте любому человеку вопрос, что сделал для физики Рентген, и девяносто девять из ста опрошенных ответят: «Как — что? Открыл рентгеновские лучи». Они будут правы, но только наполовину. Ибо Рентген сделал еще одно открытие, которым сам гордился ничуть не меньше, чем своими лучами. Но знают об этом только физики. Если сотый опрошенный окажется физиком, он скажет, что Рентген, кроме лучей, открыл еще ток Рентгена.
История этого открытия любопытна. Работу над ним Рентген начал до открытия лучей, когда жил и работал в Гиссене.
Итак, Париж, Академия наук. Понедельник 20 января 1896 года. Вторая половина дня. Около семидесяти членов академии, позабыв подобающую их сану невозмутимость, слушают сообщение Анри Пуанкаре, который сначала зачитывает статью Рентгена, а затем пускает по рядам первые рентгеновские снимки. Но это не авторские снимки; как и в Петербурге, они сделаны только недавно здесь же двумя академиками. На снимках запечатлен все тот же объект — кисть руки, но оттого, что кисть французская, она производит большее впечатление. Не из патриотических соображений, разумеется, а из-за точной воспроизводимости эксперимента.
Сообщение и демонстрация вызывают оживленную дискуссию. Анри Пуанкаре высказывает в ходе ее любопытную гипотезу: поскольку X-лучи образуются в том месте трубки, где катодные лучи ударяются в стекло, и поскольку в этом месте на стенке образуется светящееся фосфоресцирующее пятно, то не логично ли сделать вывод отсюда, вопрошает Пуанкаре, что и сама фосфоресценция, без катодных лучей, может сопровождаться испусканием лучей Рентгена?
В новой серии опытов Беккерель как бы начал борьбу с невидимым излучением, стремясь не вызвать его, как раньше, а наоборот, уничтожить. Чего он только не делал для этого: нагревал в темноте кристаллы уранила, чтобы удалить из них кристаллизационную воду, — не помогало; растворял кристалл в его собственной воде — не помогало; охлаждал пробирку и снова закристаллизовывал соль — не помогало. Излучение не исчезало; словно ванька-встанька, которого наклоняют, а он поднимается, лучи продолжали оставлять свои следы на чувствительных фотопластинках.
Раздумывая над всеми проделанными опытами, Беккерель подметил одну характерную особенность: излучали любые соединения, в которые входил уран, и вместе с тем соли других металлов никакого эффекта не давали. Подметив эту особенность, Беккерель решил попробовать сам уран в виде металла. По идее, он тоже должен излучать, но кто его знает, может, металлическое состояние как раз препятствует излучению. Словом, нужен был опыт с ураном. А для этого нужен был сам уран. А вот его-то как раз у Беккереля и не было.
Мария Складовская родилась в 1867 году в Варшаве, в семье преподавателя физики и математики. Училась она в русской гимназии и шестнадцати лет окончила ее с золотой медалью. Продолжения учения, однако, не последовало — семья нуждалась, и Маня, чтобы заработать, решила наняться репетитором в одну семью. Начало не самое удачное для будущей ученой с мировым именем, но и оно приносит какую-то пользу, помимо материальной, — молодая девушка проходит школу жизни. «Здесь мне удалось несколько лучше познать человеческую природу, — пишет она своей подруге. — Я узнала, что персонажи, с которыми я ранее встречалась только в романах, существуют в действительности и что не следует находиться в обществе людей, которых испортило богатство».
В двадцать лет положение не меняется, хотя меняется семья, где она учит детей; по-прежнему в ее письмах чувствуется тоска: «Мои планы на будущее — самые скромные: я мечтаю иметь собственный угол… Чтобы получить независимость, я отдала бы полжизни».
Действие в этой главе будет происходить в основном в Англии и Канаде, однако начать ее нам придется все же во Франции, для чего нам следует вернуться на обед, данный вечером 25 июня 1903 года Полем Ланжевеном в честь Мари Кюри, защитившей днем докторскую диссертацию. Там мы сможем познакомиться с одним из гостей, попавшим на этот вечер, что называется, прямо с корабля на бал. Он действительно только что приплыл из Канады во Францию. Хотя его присутствие здесь не только не случайно, но и глубоко символично, поскольку он один из тех ученых, которые после выдающихся открытий французских физиков сам встал под знамена радиоактивности и призвал под них новых сподвижников.
Гость Ланжевена и вместе с тем гость супругов Кюри — ибо для знакомства с ними он прибыл во Францию — Эрнест Резерфорд, глава физиков, работавших тогда в университете Мак-Гилла в Монреале, потом глава физиков, работавших в Манчестерском университете, а потом глава физиков, работавших в Кавендишской лаборатории в Кембридже, а потом глава физиков всего мира, работающих над проблемами атомного ядра.
В мае 1900 года Крукс доложил о своей странной находке Королевскому обществу. Сначала ему даже не очень поверили. Но вскоре данные Крукса подтвердил не кто иной, как сам Беккерель; на заседании Парижской Академии наук он доложил об аналогичных результатах. Но сам термин «изотоп» все еще не был никем произнесен, так как о самом понятии изотопии еще не было речи лет десять, пока не накопились в достаточном количестве новые факты. А до тех пор по страницам научных журналов кочевали различные мистеры Иксы: радий А, радий В, радий С, и т. д. И т. п.
Резерфорд в это время наслаждался прелестями тихой сельской жизни в Новой Зеландии, помогал родителям по хозяйству, готовился увезти Мэри Ньютон… нет, теперь уже Мэри Резерфорд.
Судьба Чарльза Вильсона во многом схожа с судьбой Резерфорда. Он тоже шотландец и тоже сын фермера, у него тоже много братьев и сестер, и он с детства тоже знает нужду. Даже большую, чем Эрнест, так как в четыре года потерял отца, который был единственным кормильцем всей семьи. Обстановка, сложившаяся в его семье в 1873 году, когда мать оказалась с восемью детьми без всяких средств, оставляла мало надежд на то, что когда-нибудь Чарльзу доведется быть ученым. Но помогла разница в возрасте между ним и старшим братом Уильямом и самоотверженность Уильяма, уехавшего в Индию, чтобы заработать денег и посылать их на обучение малышей.
После смерти отца семья Вильсонов, продав ферму, переехала в Манчестер, где Чарльз пошел впервые в школу. Учился он хорошо, успевал по всем предметам. Но более других влекла его биология, и если он и мечтал когда поступить в университет, то видел себя непременно ботаником или зоологом. А когда на тринадцатилетие ему подарили микроскоп и он впервые заглянул внутрь клетки, то решил, что станет цитологом. Но ему не пришлось стать специалистом ни в одной из областей биологии. Хотя тот день, когда он впервые посмотрел в микроскоп, оказался знаменательным для его последующей жизни, которую он целиком посвятил проникновению в таинства еще более далекого мира, чем мир клетки, — в мир атомов и их составных частей.
Я предупреждал в начале, что нам придется немало постранствовать по разным государствам и эпохам. Только что мы были в Канаде и Англии, до этого — во Франции, а теперь предстоит вернуться в Германию, в Мюнхен, в Физический институт при университете, где кафедрой физики руководит В.К. Рентген. Приятно возвращаться в места уже известные — испытываешь двойную радость: от встречи со старыми знакомыми и от узнавания новых людей.
Собственно, новых имен появилось здесь за это время, пока мы кочевали по Европе, не так уж много. Ну, кто здесь новичок? Зоммерфельда мы помним — благодаря стараниям Рентгена он возглавил кафедру теоретической физики. Эрнста Вагнера — тем более, он старый ассистент Рентгена еще по Вюрцбургу. Конечно, помним мы и Абрама Федоровича Иоффе, бывшего ассистента Рентгена, приезжавшего к нему регулярно из России для продолжения совместной работы.
Абраму Федоровичу Иоффе везло на случайные открытия. Нет, нет, сам он их не делал — они почему-то происходили у других ученых в его присутствии. В первый раз это случилось с его иностранным коллегой, в другой — с его собственным учеником Николаем Семеновым, ныне академиком, лауреатом Нобелевской премии.
Семенову было тогда двадцать девять лет, и он уже пять лет заведовал лабораторией электронных явлений в Физико-техническом институте в Ленинграде, из них три года был еще и заместителем директора. А директором был Иоффе.
То были удивительные годы. Молодое государство, молодые институты, молодые руководители и ученые молодые. Это обстоятельство немаловажное, молодость не так чувствительна к лишениям, а время тяжелое. Нет топлива, нет воды, нет приборов — это на работе, нет еды — дома, есть только уверенность, что все это скоро будет, и какая-то дерзкая жизнерадостность, делающая невозможное возможным.
Ну что ж, вот и подходят к концу наши странствия. Мне осталось поведать одну лишь еще историю — последнюю.
Правда, по хронологии ока самая древняя в этой книге: она восходит к тем далеким временам, когда Цейлон назывался еще санскритским словом «Серендипа», образованным в еще более далекие времена соединением двух слов: «Симхала» — истинное название Цейлона, и «Двипа» — остров. Открыт Симхала Двипа был бенгальским принцем Виджая, который отправился в плавание по Индийскому океану из Калькутты и неожиданно около самой Бенгалии обнаружил большой остров. Принц поселился на острове, стал править им; его потомки звались принцами Симхала Двипа. Со временем это длинное прозвище сократилось до принцев Серендипа. И вот с того момента и берет свое начало предание, о котором я хочу рассказать.