Нехватка энергетических и сырьевых ресурсов — это та серьезная проблема, с которой обществу придется столкнуться уже в ближайшем будущем. Жизнь — это, в конечном счете, не только обмен веществ и энергии. Вполне естественно, что мы потребляем энергию, расходуем сырье и материалы, причем тем больше, чем «активнее» мы живем. Но суть вопроса в том, почему именно человек разумный, и только он, за свою столь короткую историю, насчитывающую всего 40 тысяч лет, сумел создать энергетическую и сырьевую проблемы. Жизнь на нашей планете зародилась около 2,5 миллиарда лет назад. Высшие растения существуют уже почти 450 миллионов, а позвоночные животные — около 400 миллионов лет. Почему же эти живые организмы на протяжении своего несравненно более длительного времени существования ни разу не оказались в кризисной ситуации? Ведь и они преобразуют энергию и вещество, причем в гораздо больших масштабах, чем это делал и делает человек. Однако перед ними не возникало дилемм. Почему? Можем и должны ли мы учиться у животных и растений, если хотим выжить? Я думаю: можем и должны. И я постараюсь доказать это на ряде примеров.
Солнечный свет — наиболее мощный и наименее освоенный человеком источник энергии. За исключением энергии ядра практически вся энергия, прямо или косвенно использовавшаяся когда-либо человеком, представляет собой энергию световых лучей. Гидравлические электростанции преобразуют энергию рек в электрическую. Однако возможность работы ГЭС обусловлена круговоротом воды в природе: нагревание атмосферы солнечными лучами вызывает испарение воды, которая затем выпадает в виде осадков. Тепловые электростанции вырабатывают энергию, используя каменный уголь, нефть, природный газ, то есть органические вещества, которые были созданы зелеными растениями с помощью солнечной энергии миллионы лет назад. Органическое происхождение имеют также бензин, керосин, мазут и прочие виды минерального топлива, получаемые из нефти и каменного угля. Продукты питания, обеспечивающие человеческий организм необходимой энергией (зачастую в больших, чем это требуется, количествах), в конечном счете поставляются растениями, поскольку животные, мясо которых мы едим, питаются либо зелеными растениями, либо травоядными животными. Что касается самих растений, то они вырабатывают органические вещества, непосредственно улавливая и связывая лучистую энергию. Без этого первичного использования света жизнь на Земле была бы невозможна.
Потребность в энергии обусловливает необходимость максимального поглощения солнечной радиации. Особую актуальность данная проблема приобретает при решении вопросов, связанных с запуском автоматических межпланетных станций (АМС), искусственных спутников Земли, лунных модулей, космических лабораторий и т. п. Электропитание разнообразной электронной аппаратуры искусственных орбитальных станций осуществляется о помощью так называемых солнечных батарей, которые состоят из большого числа фотоэлементов, непосредственно преобразующих энергию солнечной радиации в электрическую. Значит, космонавтам нет необходимости брать с собой в полет большой запас разного рода «энергетических консервов», в частности, очень тяжелые аккумуляторы, обладающие к тому же небольшим сроком службы.
Если солнечные батареи укрепить жестко на подвижной системе, например на искусственном спутнике Земли, то Солнце будет освещать их периодически: из-за осевого вращения спутника большую часть времени они не смогут производить электроэнергию. Чтобы избежать этого, инженеры по космической технике создали исключительно сложные электронные системы слежения, которые непрерывно фиксируют направление солнечных лучей и посредством прецизионных сервомеханизмов стабилизируют спутник в положении, которое обеспечивает оптимальный режим освещения батарей Солнцем.
Все попытки содержать в открытом грунте в условиях Центральной Европы изнеженные растения флоры тропических лесов кончаются неудачей: довольно быстро «чужеземцы» гибнут. Успешно выращивать такие растения можно лишь в оранжерее, которая позволяет создать более благоприятные, чем на открытом воздухе, температуру, влажность и освещенность. Почвенно-климатические условия тропических лесов с их постоянно высокими температурами и влажностью резко отличаются от природных условий так называемых «умеренных» широт. Например, среднегодовая температура воздуха на Яве равна 25° по Цельсию, средняя температура самого холодного месяца, февраля, достигает 24,5°, а самого теплого, сентября, около 25,5° выше нуля. Для сравнения скажем, что средняя температура января в Мюнхене равна минус 1,5°, а июля — плюс 17,5°. Таким образом, перепад средних температур в экваториальном лесу между самым теплым и самым холодным месяцами года не превышает 1°, в странах же умеренного климата он составляет почти 20°. Аналогичная картина наблюдается и в отношении влажности воздуха, осадков, числа солнечных дней в году. Остается лишь удивляться тому, что мы называем наши средние широты «умеренными».
Вам, бесспорно, приходилось читать или слышать сообщения о том, что в каком-то большом городе работники коммунального хозяйства, занимающиеся вывозкой мусора и бытовых отходов, на несколько дней объявили забастовку. В такие дни мусорные баки обычно бывают переполнены, а все, что не попало в них, валяется рядом, захламляя землю. Любое дуновение ветра поднимает в воздух и разносит по сторонам обрывки газет, клочки бумаги и грязные картонки, с грохотом гонит по дороге порожние жестяные банки. Вихрем кружится грязно-сальная пыль. Въедливый, невыносимый смрад гниющих пищевых отходов вызывает тошноту.
Таков частный аспект проблемы отходов. Большую масштабность и остроту она обретает тогда, когда отходы накапливаются в течение не двух-трех дней, а многих месяцев, лет и десятилетий. Трудно представить себе, какое огромное количество вещей имеет самое непосредственное отношение к нашей повседневной жизни, начиная от стержня для шариковой ручки и кончая автомобилем! Какое изобилие самых разнообразных предметов сходит каждую секунду с полностью автоматизированных поточных линий гигантских промышленных предприятий! Все, что сейчас мысленно встает перед вашим взором, — это все потенциальные отходы, отбросы, мусор.
Смешав две части водорода и одну часть чистого кислорода, мы получим гремучий газ. Если теперь эту смесь поджечь, то начинается химическая реакция и произойдет, наконец, сильный взрыв. Но та же самая реакция может идти уже при комнатной температуре и протекать гораздо спокойнее, стоит лишь ввести в сосуд мелкораздробленную платину. Реакция сопровождается выделением значительного количества тепла, химическая же природа металла остается без изменений. Как видим, достаточно одного присутствия платины, чтобы произошло взаимодействие одних веществ с другими. Это напоминает ситуацию, когда водитель автомашины, заметив дорожного инспектора, в тот же миг начинает весьма аккуратно соблюдать правила ограничения скорости. Вещества, которые изменяют скорость химической реакции, называют катализаторами. Специалисты используют их, чтобы ускорить химические промышленные или лабораторные процессы либо чтобы вообще сделать возможным их протекание. Платина — лишь один из многих катализаторов, без которых в настоящее время не может обойтись техническая химия. В частности, катализирующим действием обладает и самый обыкновенный пепел от сигарет. Если, например, кусочек сахара-рафинада обвалять в пепле и поджечь, сахар будет гореть красивым голубым пламенем. Без пепла сделать это не удается.
Как правило, яблоки поздних сортов снимают прежде, чем они поспеют. Собранный урожай затем тщательно упаковывают. При хранении и транспортировке яблоки, дозревают. Однако было замечено, что если поздние сорта хранить вместе со скороспелыми, то процесс дозревания намного ускорится, очевидно, благодаря столь благоприятному соседству. При этом яблокам вовсе не нужно соприкасаться между собой. Как же в таком случае один сорт яблок влияет на другой?
Многие любители комнатных растений знают, что растущие вместе разные экземпляры одного вида растений открывают свои бутоны в один и тот же день и что позднее сформировавшиеся бутоны одного цветка в своем росте догоняют более развитые бутоны другого, и поэтому те и другие раскрываются обычно одновременно. Такое развитие событий полезно растениям, поскольку синхронное распускание цветков обеспечивает их одновременное опыление насекомыми. Но каким же образом находящиеся в разных горшках растения передают друг другу необходимую информацию?
Наиболее примитивными растительными организмами являются одноклеточные: бактерии, жгутиковые споры водорослей и грибов, половые клетки мхов и папоротников.
Понятие «примитивный», употребленное здесь, весьма спорно, если принять во внимание исключительные способности этих крохотных созданий. По своему к.п.д. механизм их передвижения (если взять только этот показатель) оставляет далеко позади все технические средства, созданные человеком (об этом рассказывается в разделе «Через реки, озера, моря»). Но куда и зачем движутся одноклеточные? Перемещаются ли они в определенном направлении, к определенной цели? Или их движение в воде более или менее хаотично? Один английский исследователь, занимающийся изучением проблем поведения, не без иронии заметил, что любое действие в природе тем или иным образом служит одной из двух целей: питанию или размножению. В отношении одноклеточных это высказывание особенно справедливо. Перемещаясь, они ориентируются на химическое либо световое раздражение.
Когда во второй половине прошлого века первые исключительно смелые инженерные сооружения из стекла, стали и бетона начали постепенно вытеснять постройки традиционных архитектурных стилей, то их появление ознаменовало глубокий переворот в зодческом искусстве. Успехи в строительной технике позволили создать новые, ранее неизвестные архитектурные формы и конструкции. Провозвестниками новомодных тенденций в зодчестве явились здания вокзала в Ливерпуле (1852 год), Парижская библиотека (1861 год) и Эйфелева башня, открытие которой было приурочено к Всемирной выставке 1889 года в Париже. Однако первым по-настоящему гениальным монументальным сооружением новой архитектуры был Хрустальный дворец в Лондоне, огромное здание павильонного типа, построенное целиком из стекла и металла.
Создатель Хрустального дворца Джозеф Пакстон, в молодости страстный любитель-садовод, принял участие в конкурсе на разработку проекта ярмарочного павильона для Всемирной выставки в Лондоне (1851 год). Честолюбие Пакстона, присущее ему чувство новизны, горячее желание затмить конкурентов — все побуждало его искать эпохальные решения. Ему виделось сооружение, которое, несмотря на свои гигантские размеры, не воспринималось бы как нечто тяжелое и неуклюжее, а напротив, казалось бы почти невесомым. Это должна была быть конструкция, которая позволила бы экономно расходовать строительные материалы и широко применять стекло, стекло и еще раз стекло. В то же время она должна была быть достаточно прочной, с тем чтобы полностью соответствовать требованиям, предъявляемым статикой сооружений.
Существуют две возможности, позволяющие придать тонкому листу со значительной площадью поверхности, а именно таковы листья многих тропических растений, дополнительную жесткость.
С одной из них мы уже познакомились. Это — образование ребер жесткости. Для водных растений, как Виктория регия, этот метод вполне пригоден. Здесь практически не имеет никакого значения то обстоятельство, что дополнительные конструкции в форме многочисленных распорок утяжеляют лист. Вода, на поверхности которой плавают листья гигантских лилий, хорошо выдерживает их вес.
Иное дело крупные и очень крупные листья наземных растений, и прежде всего тех, которые произрастают в тропических районах Земли с их частыми ураганными ветрами и сильными ливнями.
Одним из важнейших архитектурных элементов, применяемых с очень давних времен, является колонна. Известна она и в растительном мире. На протяжении более чем четырех тысяч лет архитекторы создают ее с однородной внутренней структурой. В то же время природа испокон веков выращивает колонны, которые в принципе сконструированы столь же рационально, как и те армированные сталью бетонные опоры, с которыми человек знаком на протяжении чуть более 100 лет. Бетон хорошо сопротивляется сжатию, но плохо переносит значительные растягивающие нагрузки, что обусловливает его повышенную восприимчивость к изгибающему напряжению. Вспомним наш опыт с листом гофрированной бумаги и положим бетонную плиту концами на две опоры. Как и в первом случае, нагрузим плиту. Какое-то непродолжительное время ее нижняя часть будет испытывать растяжение. Затем плита треснет, поскольку бетон неэластичен. Однако если бетон армировать сталью, которая устойчива к растягивающим нагрузкам, то вся конструкция обретет ту высокую прочность и долговечность, какие присущи, например, большепролетным автодорожным мостам.
Чем экстремальнее условия обитания, тем гениальнее и разнообразнее приспособляемость растений к превратностям окружающей среды. Нередко приспособление заходит столь далеко, что внешняя среда начинает полностью определять форму растения. И тогда растения, относящиеся к различным семействам, но обитающие в одних и тех же суровых условиях, часто становятся внешне столь похожими друг на друга, что это может ввести в заблуждение в отношении истинности их родственных связей. Например, в пустынных областях для многих видов, и, прежде всего, для кактусов, наиболее рациональной оказалась форма шара. Однако не все то, что имеет шарообразную форму и утыкано шипами-колючками, — кактусы. Столь целесообразная конструкция, позволяющая выжить в тяжелейших условиях пустынь и полупустынь, возникла и в других систематических группах растений, не принадлежащих к семейству кактусовых.
И наоборот, кактусы не всегда приобретают форму шара или колонны, усеянных колючками. Один из самых известных в мире кактусоведов Курт Баккеберг в своей книге «Чудесный мир кактусов» рассказывает о том, как могут выглядеть эти растения, помещенные в те или иные условия обитания. Вот что он пишет:
Когда нескольким более 4 тысяч лет назад люди каменного века, обитавшие на берегах Цюрихского, Боденского, Женевского и Невшательского озер, на низких морских побережьях, в пойме реки По и в других столь же сырых местах, стали переходить к оседлой жизни, им пришлось столкнуться с проблемой сооружения жилищ в условиях постоянного или временного затопления.
О том, как люди эпохи неолита решали эту проблему, рассказывает древняя наскальная живопись, о том же повествуют и более поздние сочинения римского историка Геродота: они возводили свайные постройки.
В 1854 году чрезвычайно низкий уровень воды в швейцарских озерах обнажил хорошо сохранившиеся забитые в грунт деревянные опоры древних строений, что побудило историков продолжить активные поиски следов свайной культуры. Профессор X. Райнерт реконструировал одно из ранних береговых поселений, которое располагалось близ Ульдинга на берегу Боденского озера.
Тяжелым конструкциям, если к тому же они обладают сравнительно небольшой площадью основания, присущи свои собственные статические закономерности. По этой причине их следует либо выполнять массивными, либо они должны иметь каркас, состоящий из вертикальных и горизонтальных элементов и раскосов, с тем, чтобы все сооружение в целом приобрело необходимые жесткость и прочность. Именно по этому принципу в наши дни строятся стальные решетчатые опоры высоковольтных линий электропередачи.
На протяжении многих столетий каркасную (иначе, фахверковую) конструкцию широко применяли в жилых постройках. При этом стены здания не являлись несущими элементами. Они лишь оберегали жилище от воздействия плохой погоды. И тем не менее их делали в достаточной степени толстыми. В последние десятилетия метод каркасного строительства переживает свой «ренессанс». Правда, сегодня мы почти не строим из дерева и не применяем раскосы. И может быть, поэтому мы не употребляем больше выражения «фахверковая конструкция», а говорим о «каркасном строительстве». Но принцип остается прежним: прочная решетчатая конструкция обеспечивает строению необходимую устойчивость, а стены, как и прежде, лишь защищают от холода, дождя и ветра, хотя и стали более тонкими.
Крепление распорками, придание волнистой формы строительным материалам, применение свай и сооружение арматурных каркасов — все это методы строительства с использованием легких и облегченных конструкций.
Поскольку они имеют прямое отношение прежде всего к солидным по своим размерам объектам, будь то огромные здания, большие растения или какие-то крупные части растений, их присутствие всегда легко заметить. Однако аналогичные структуры известны и в растительном микромире.
Дитя XX века — конструкция типа «сэндвич», или просто «сэндвич». При этом я имею в виду не традиционный английский сэндвич, существующий не одно столетие, а многослойные элементы строительной конструкции, сочетающие в себе малый вес с высокой прочностью. Что это такое? Представим себе две тонкие и весьма прочные опорные плиты, между которыми находится толстый слой легкого, но восприимчивого к механическим нагрузкам конструкционного материала. В большинстве случаев в качестве последнего используют жесткие пенопласты или ячеистые плиты, которые, подобно содержимому английских сэндвичей, склеиваются, прессуются или свариваются с опорными панелями. Наряду с большой экономией исходных материалов и легкостью такие конструкции отличаются очень высокой прочностью.
Прочность конструкционных материалов, изготовляемых из пластических масс (маты, панели, пленки), можно повысить путем армирования их стекловолокном. Исследователи многих стран приложили немало усилий, чтобы определить, все ли виды стеклянных волокон и способы скрепления их между собой в нити и в ткани разного плетения одинаково хороши для эффективного армирования и нет ли здесь каких-либо существенных различий. Если различия существуют, то как создать идеальную волокнистую структуру? Результат ошеломляет: стеклянные волокна тем прочнее, чем они тоньше. Но это вовсе не значит, что более тонкое волокно труднее рвется, просто при уменьшении диаметра волокна вдвое прочность на разрыв уменьшается в гораздо меньшей пропорции. Чтобы повысить долговечность пластмасс, целесообразнее применять стеклоткани, в которых тонких стекловолокон содержится больше, чем толстых. Но это лишь одно чрезвычайно важное открытие. Другое не менее важное знание состоит в том, что наиболее благоприятное соотношение длины и толщины стеклянной нити составляет 200:1.
Растения — подлинные рационалисты. И именно это их свойство объясняет, почему представители разных семейств растений неизменно «применяют» одни и те же оказавшиеся наиболее удачными архитектурные принципы. Особенно широко распространен в мире растений принцип наиболее рационального использования пространства, в первую очередь при закладке тех органов растения, которые затем развиваются в огромном количестве. При этом безразлично, идет ли речь о листьях на стебле, о чешуйках на шишках хвойных деревьев, об изобилии цветков, а затем семян в крупных корзинках подсолнечника или о пучках колючек на бородавчатых выростах у кактусов. Все они в процессе своего развития размещаются в пространстве таким образом, чтобы занять в нем минимальный объем. Подобно тому, как умелые руки винодела создают в винном погребе строгий геометрические конструкции из укладываемых на хранение бутылок с вином, так и полностью сформировавшиеся органы растений располагаются по отношению друг к другу в строго определенном порядке.
Постоянно повторяющаяся в природе и все же каждый раз по-новому воспринимаемая картина целесообразного размещения ее элементов в пространстве не могла не обратить на себя внимание человека.
«Математически точно, геометрически правильно» — это лучшие оценки, которые можно дать той или иной технической конструкции. Выше уже приводились примеры того, с какой экономностью растения используют пространство. Не менее удивительна прецизионная точность геометрических форм растений.
У разных растений совершенно различные иглы. Две из них созданы руками человека, одна — ботанического происхождения. Все три настолько малы, что их можно детально разглядеть только под микроскопом: длина каждой из игл менее 2 миллиметров. На снимке они изображены в 50-кратном увеличении.
На первой фотографии мы видим кончик прецизионной иглы высшего класса, применяемой в медицине для наложения швов. При разглядывании ее невооруженным глазом создается впечатление, что игла равномерно утончается к своему острию. В действительности же игла спереди заточена. Заточка, однако, проведена грубо и асимметрично, а самый кончик острия даже загнут. Загнутые концы не единичный случай, а практически норма в производстве прецизионных игл.
Освоить Землю. Не почву, глину, песок, горные породы и так далее, а земной шар как таковой. Но известно, что около двух третей поверхности нашей планеты покрыто водой. В таком случае освоить Землю означает также освоить и водную стихию. Человек пытался делать это по-своему, растения — по-своему. Человеку «удалось» многое: он сумел загрязнить ручьи, реки и даже моря и океаны до размеров, угрожающих самой жизни, и стал причиной опасного снижения запасов растворенного и воде кислорода. Американские ученые полагают, что если и впредь реки Земли будут продолжать сбрасывать в Мировой океан все увеличивающиеся количества отбросов и ядовитых веществ, то может оказаться, что к концу столетия в его водах нельзя будет поймать ни одной рыбешки, что погибнут водоросли — главные поставщики кислорода в атмосферу Земли, и тогда наземная растительность окажется не в состоянии одна восполнять израсходованные количества кислорода. Вот такими методами человек пытается «осваивать» водную стихию! Напротив, растения не только приспособились к обитанию в воде, но научились при этом очищать и осветлять воду и даже обогащать ее кислородом. Человек нередко разрушает окружающую среду, с тем чтобы поставить ее себе на службу. Растения же всячески сохраняют и поддерживают ее ради той же цели.
Существует мнение, что лишь систематическая разработка средств разрушения якобы позволяет науке и технике добиваться крупных успехов. Но совершенно очевидно, что стимулировать таким путем технический прогресс чересчур дорого и опасно. К тому же это окольный путь. Согласно другому суждению, появление некоторых видов новой техники, используемых ныне в мирных целях, было бы вообще немыслимо, если бы они вначале не предназначались только для военных нужд, поскольку, мол, возможности их мирного применения выявляются значительно позднее. На это можно возразить, что последнее следует отнести на счет неумения человека правильно распознавать и конструктивно, гибко решать проблемы повседневной жизни. Любопытно, что растения также имеют в своем арсенале изобретенные когда-то людьми катапульты, рычажные метательные аппараты, пневматические ружья и прочие взрывные устройства, хотя они никогда и ни на кого не нападали, и что растения сами являются прекрасными баллистиками, хотя они никогда и ни на кого не сбрасывали бомб. Растения осуществили то, что иной человек сочтет за невозможное: они научились стрелять не воюя.
Веселые четверостишия юмориста Хайнца Эрхардта приписывают безобиднейшему одуванчику довольно воинственные намерения. Вот он — типично человеческий подход к явлениям природы! Впрочем, в стихах содержится и доля истины.
На обочине зеленой — одуванчик — славный воин,
захватил он все вокруг: сад и рощу, поле, луг...
Пока тихо, он — молчит, но лишь ветер налетит,
шлет в воздушный океан парашютный свой десант.
В первые дни мая 1934 года на острове Гельголанд появился некто Ремпе, молодой биолог, работавший над своей докторской диссертацией. Он намеревался найти на этом клочке земли, затерявшемся в просторах Северного моря, пыльцу сосны, ели, дуба и березы. На первый взгляд эта задача казалась столь же неразумной, как и желание обнаружить в Африке следы обитания там австралийского кенгуру, поскольку в те годы на Гельголанде не было ни сосен, ни елей, ни берез. Единственными деревьями на острове, распустившими ко времени приезда Ремпе свои немногочисленные цветки, были несколько ив и одинокий вяз, росший у подъема на холм. Самая ближайшая точка материка находилась на расстоянии 51 километра. До ближайшего острова (Шаргорн) было 44 километра пути. Но молодой ученый хорошо знал, чего он хочет. В северо-западной оконечности острова, на высоте 53 метров над уровнем моря, прямо на скалах, круто обрывающихся к воде, он установил двухметровый шест. На нем он укрепил предварительно смазанную вазелином и ничем не защищенную от дождя и ветра ролик-ловушку диаметром 14 миллиметров и длиной 45 миллиметров и принялся ждать. Каждые 12 часов Ремпе менял ловушку. И так повторилось семь раз. Результат превзошел все ожидания: по истечении трех с половиной суток на каждом квадратном сантиметре поверхности ловушки будущий доктор насчитал 955 пыльцевых зерен дуба. Это почти 10 зерен на 1 квадратный миллиметр! Такого количества было бы вполне достаточно для опыления дерева, сплошь усеянного распустившимися женскими цветками.
Я неоднократно обращал внимание читателя на то, что растения при решении той или иной задачи обычно используют все представляющиеся для этого возможности. Применительно к тем транспортным средствам, с помощью которых происходит их расселение, сказанное означает, что растения должны, помимо путешествий по воздуху и воде, попытаться в тех же целях прибегнуть к помощи летающих или бегающих животных. Что может быть для растения более заманчивым, чем полет по воздуху с птицей или странствие по земле с животными, ни одного дня не проводящими на одном и том же месте? Растения научились использовать открывающиеся здесь возможности и полностью приспособились к ним.
В зависимости от вида «транспортного средства» растения перевозятся либо за определенное вознаграждение, либо бесплатно. Читателю, наверно, хорошо известно, насколько трудно попасть незамеченным на самолет: если хочешь лететь, плати. Другое дело — наземный транспорт. Порой здесь не представляет особого труда прокатиться «зайцем». Нечто похожее можно наблюдать и у растений. Если воздушный полет оплачивают, то путешествие в компании с наземными животными они совершают «безбилетниками», прицепившись к их шерсти.
Независимо от того, о чем идет речь: о совершающих ли морские путешествия кокосовых орехах, о гонимых ли ветром по песчаным дюнам морских побережий соплодиях Spinifex или о степных растениях шарообразной формы «перекати-поле», во всех случаях мы имеем дело с ярко выраженным стремлением растения колонизовать новые территории и тем самым обеспечить как можно более широкое расселение своего вида. Сказанное в полной мере относится и к дальним полетам по воздуху пыльцы растений. На первый взгляд может показаться, что в последнем примере расселение практически исключено, поскольку анемофилия, или ветроопыление, предполагает наличие в конечном пункте воздушного путешествия, помимо пыльцы, хотя бы одного экземпляра цветущего растения того же вида. Однако посредством скрещивания с родственными видами, а позднее и возвратного скрещивания (бэккросса) возможно реальное увеличение ареала.
Если вы, читатель, живете на шестом этаже, проделайте один хотя и утомительный, но в высшей степени интересный эксперимент. Возьмите десятилитровое пластмассовое ведро, спуститесь с ним во двор и наберите там воды из водопроводного крана. С полным ведром поднимитесь к себе на шестой этаж и опорожните ведро. Всю эту операцию повторите 20 раз. Пользоваться лифтом не нужно, иначе эксперимент потеряет свою наглядность. Закончив его, вы в итоге поднимите 200 литров воды на высоту примерно 15 метров, иными словами, выполните работу, которую совершает в теплый солнечный день взрослое дерево березы.
В свою очередь я приведу здесь еще несколько любопытных цифр. Через листву небольшой (100 метров x 100 метров) буковой рощицы, где насчитывается около 400 деревьев высотой 25 — 30 метров, каждые летние сутки испаряется в среднем 20 тонн воды, то есть такое количество, которое вмещает в себя крупная автоцистерна. Но до того, как вода испарится, она по стволу и веткам дерева будет поднята в среднем на высоту 20 метров. Ради интереса можно подсчитать, какому количеству ведер и скольким этажам будут соответствовать эти цифры. В любом случае окажется, что произведена значительная работа. Но самое удивительное здесь то, что на ее выполнение деревья вообще не затрачивают собственной энергии. Рациональная конструкция делает этот процесс автоматическим. Испарение воды с поверхности листьев обусловливает непрерывный подсос снизу.
В среднем растение на 80 процентов состоит из воды. У типичных ксерофитов содержание влаги низко, у растений, запасающих воду впрок, оно нередко достигает 95% общего веса. Как это вообще свойственно живой природе, вода играет большую роль в жизни растений. Она регулирует прочностные свойства их тканей: является растворителем для питательных солей, которые затем разносятся по всему растению; оказывает прямое воздействие на электрические процессы, протекающие в растении. При обязательном участии воды в живом организме осуществляются все химические реакции, и, наконец, без нее невозможен синтез твердых неводных растительных веществ. Поэтому для растения регулярное снабжение его водой составляет одну из жизненно важных проблем вообще. Водным растениям в этом отношении намного легче: они могут вбирать всю столь необходимую для их существования влагу всей своей поверхностью. Наземные растения, как правило, усваивают воду из влажной почвы с помощью сосущих корней. Корневая система растений устроена в высшей степени рационально и даже у одного и того же растения обладает очень высокой приспособляемостью. Например, если растение пересадить в водный питательный раствор, в котором полностью отсутствует почва, то структура его корневой системы изменится исключительно быстро. Образуется широко разветвленная сеть дополнительных корневых волосков, которая дает возможность корням выполнять их основную функцию — активно всасывать воду и направлять ее под давлением в проводящую систему растения.
Из школьной программы по физике нам хорошо известно, что дли того, чтобы нагреть 1 литр воды, имеющей температуру 14,5° по Цельсию, до температуры 15,5°, необходимо затратить 1 килокалорию. Килокалория относится к числу устаревших единиц измерения, и поэтому мы постараемся в нашей книге отказаться от использования ее в качестве меры тепла, но прежде укажем, что одна большая калория эквивалентна 1,16 ватт-часа электрической энергии. Чтобы вскипятить 1 литр воды комнатной температуры (14°), то есть нагреть ее на 86°, нужно затратить около 0,1 киловатт-часа. Это как раз то количество анергии, которое расходуется горящей в течение одного часа электролампочкой мощностью 100 ватт или же потребуется для нагревания 86 литров воды на один градус. И наоборот, того количества энергии, которое выделяется при охлаждении 86 литров воды на один градус, достаточно для работы той же лампочки в течение одного часа. Правда, при том условии, что превращение одного вида энергии в другой будет происходить без потерь. Но даже при их наличии общий поток полезной энергии окажется довольно значительным. Если бы, например, можно было остудить всю воду Боденского озера на один градус, то потеря тепла была бы эквивалентна 75 миллиардам киловатт-часов электроэнергии.
Если вы пожелаете защитить от холода или сильного перегрева свой дом, автомобильный прицеп-дачу, отопительные трубы, какую-либо чувствительную аппаратуру или даже самого себя, то сделать это в наши дни совсем нетрудно. Торговые фирмы предложат вам богатый ассортимент теплоизоляционных материалов для самых различных целей: асбокартон и кизельгур, торфяные плиты и стекловойлок, минеральную вату, пробку и стекломаты, синтетические пенопласты и вермикулит, перлит и профилированный лист, двойные оконные рамы и стеганые поролоновые куртки. Выбор товаров исключительно широк, многообразие технических решений кажется безграничным. Однако при ближайшем рассмотрении выясняется, что по принципу действия различные изоляционные материалы походят друг на друга как две капли воды.
«И каждое растение радостно тянется к свету». Эта или подобная ей фраза принадлежит какому-то из немецких поэтов. Но вряд ли позволил бы себе высказать подобную мысль, хотя и в поэтической форме, известный путешественник-естествоиспытатель XIX века Александр Гумбольдт. Тот, кто знаком с тропическими лесами и пустынями, хорошо знает, сколь жгуче испепеляющими и опасными для всего живого могут быть лучи экваториального солнца. В этих районах никакое растение не тянется с радостью к свету. Напротив, флора пытается любыми путями укрыться от знойных солнечных лучей. Все живое ищет избавительной прохлады, стремится уйти в тень. Растения таких регионов вынуждены спасаться от жары в собственной тени. Они могут создавать ее самым различным образом: либо, например, с помощью плотной оболочки-мантии из серебристо-белых чешуек, как это делают песчаные розы (виды Anacampseros), растущие на сверкающих под лучами жаркого солнца гнейсовых и кварцитовых плато Южной Африки; либо посредством густого и длинного волосообразного опушения белого цвета, как у растения с поэтическим названием «живой снег» (Tephrocactus floccosus), образующего в горных пустынях Южной Америки обширные колонии; либо, наконец, путем выработки в процессе длительной эволюции наиболее рациональной внешней формы.
В этом разделе сайта "Школярик" приходится довольно часто упоминать о кактусах. Вот уже на протяжении почти двух десятилетий я не перестаю снова и снова удивляться этому необыкновенному семейству и с большим интересом нанимаюсь его изучением. Окружающая среда, в которой Обитают кактусы, нередко требует от всех этих колонно-, шаро-, цилиндро- и клубнеобразных творений природы такой жизнестойкости, которая находится буквально на пределе возможностей растительного организма.
Множество самых причудливых по форме кактусов обитает на пустынных нагорьях Мексики. Некоторые из них выработали в высшей степени несвойственный растениям способ зимовки. Подобно мексиканским сусликам, родственникам альпийских сурков, которые устраивают под землей норы и с наступлением зимнего засушливого периода впадают в глубокую, продолжительностью 6 или 7 месяцев, спячку, под землю на зимний покой уходит и лофофора (вид кактуса). В земле тепло, и сюда не могут проникнуть холодные иссушающие ветры высокогорья. В феврале — марте с первыми весенними дождями серо-зеленый кожистый шар покидает свое «земляное гнездо» и выходит на дневную поверхность.