logo

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА

ВСЕМИРНАЯ ИСТОРИЯ

БИОЛОГИЯ

Одним из первых, кто задумался о причинах формирования этих изгибов, был Альберт Эйнштейн. В 1926 году он представил Прусской академии наук доклад без каких-либо уравнений, озаглавленный «Причины образования извилин в руслах рек и так называемый закон Бэра». В чем же суть этого знаменитого закона? Основываясь на наблюдениях выдающихся географов XIX века, естествоиспытатель Карл Бэр пришел к выводу, что в Северном полушарии, в равнинной местности, правый берег рек обычно более крут, чем левый, а в Южном полушарии все наоборот: левый берег круче правого.

Подробнее...

Теперь проанализируем движение воды в той части реки, где она образует излучину. Оно аналогично движению воды в чашке, отмечает Эйнштейн. Так же как жидкость в ходе эксперимента тормозилась стенками чашки, скорость потока уменьшается трением в непосредственной близости от дна: таким образом, центробежная сила, направленная наружу от поворота, здесь меньше, чем у поверхности. Таким образом, возникает вертикальная циркуляция, обращенная во внешнюю сторону излучины около поверхности и внутрь вблизи дна (илл. 4).

Подробнее...

Форма русла реки во многом зависит от рельефа местности, по которой река протекает. В районе с неоднородным ландшафтом река петляет, избегая неровностей и выбирая путь с наибольшим уклоном. Но и на равнине прямолинейность русла не сохраняется. Небольшой обвал земли или падение дерева на берегу заставляют поток образовать изгиб, который может постепенно увеличиваться, образуя меандр в соответствии с описанным выше процессом.

Какую именно форму обычно принимают меандры реки, текущей по равнине? В 1960-х годах геологи пришли к выводу, что каждая извилина имеет специфическую форму – такую, которую принимает гибкий стержень, если его согнуть, приблизив концы друг к другу (илл. 7). Она представляет собой эйлерову кривую, названную так в честь швейцарского математика Леонарда Эйлера (1707–1783), который первым решил эту задачу. Работа Эйлера по-прежнему широко цитируется в руководствах о прочности балок – те начинают изгибаться, если слишком сильно надавить на их концы.

Подробнее...

В большое озеро обычно впадает много водных потоков. Например, в Женевское озеро втекает не только Рона, но и небольшие реки, такие как Дранс на юге и Вёвеж на севере. А вытекает из него одна Рона. И это общее утверждение: независимо от количества впадающих в озеро рек, из него никогда не вытекает более одной! Как это объяснить?

Причина заключается в том, что вода из озера вытекает по самому глубокому (низкому) руслу, которое она находит. Если не принимать во внимание исключительные случаи паводков, то обычно поверхность воды в озере находится на уровне самого низкого из возможных мест вытекания, поэтому из него выходит только один поток.

Подробнее...

Каким чудом звук, порожденный вблизи австралийского побережья, достигает Бермудских островов в десятках тысяч километров от него? Чтобы это понять, проведем параллель между распространением звука и света, для описания которого мы привыкли использовать понятие «луч». Затем мы погрузимся в океан в поисках таинственного волновода, который может передавать звук на огромные расстояния.

За последние 20 лет огромное, постоянно растущее количество данных перемещается с одного континента на другой благодаря оптоволоконным кабелям, пересекающим океаны (илл. 1). На илл. 2 показан путь сообщения, отправленного с вашего компьютера или телефона американскому или японскому коллеге. Конечно, эти световые волны слабеют во время пути, но затухание относительно невелико, а необходимое количество промежуточных станций удивительно мало.

Подробнее...

В такой жидкости, как морская вода, скорость звука зависит от ее свойств, которые неодинаковы в разных частях океана. Здесь и находится ключ к решению нашей задачи! В зависимости от содержания соли, температуры и давления воды, скорость звука варьирует от 1400 до 1540 м/с. Например, давление на глубине возрастает, что, как правило, делает звук быстрее. Также звук распространяется быстрее при более высокой температуре. Но более плотная холодная вода опускается на дно океана. Эти два противодействующих эффекта объясняют изменение скорости звука в зависимости от глубины (илл. 5). В непосредственной близости от поверхности резкое понижение температуры сначала приводит к постепенному уменьшению скорости звука c. На больших глубинах изменение температуры не так ощутимо, преобладает эффект увеличения давления, и это приводит к возрастанию c по мере приближения ко дну.

Подробнее...

Теперь рассмотрим звуковой луч, источник которого находится на глубине zm. Независимо от того, пойдет ли он вверх или вниз, в области, в которой он оказывается, скорость звука выше, чем на оси. Таким образом, в результате последовательного прохождения слоев воды на своем пути звуковой луч постепенно искривляется, вплоть до скользящего падения под таким углом, для которого происходит полное отражение. Тогда он начинает искривляться в направлении увеличения (или уменьшения) глубины, пока снова не достигнет глубины zm, где изменение скорости звука меняет знак. Таким образом, луч движется по зигзагообразной траектории между двумя плоскостями (илл. 6).

Подробнее...

Когда стоит хорошая погода, днем небо голубое, а в сумерках – алое. Через несколько часов опускается ночная тьма, и на черном небе вспыхивают мириады звезд. Днем облака белые или сероватые. В дождливую погоду иногда появляется радуга… Какие физические принципы объясняют все эти цвета? Ответ вы найдете в этой главе. И поскольку речь идет о небесах, мы поговорим и об их крылатых обитателях– птицах и насекомых.

Море и небо дарят нам разнообразные цвета, вдохновившие многих художников. Аркадий Рылов воспроизвел эти цвета на картине, выставленной в Третьяковской галерее в Москве (илл. 1). Белые хмурые облака плывут по небу всех оттенков синего. Поверхность моря более темная, подошвы волн – почти черные, а гребни местами образуют белые «барашки».

Подробнее...

Человеческий глаз чувствителен к электромагнитному излучению волн длиной от 400 до 800 нм (см. илл.). Объекты кажутся цветными, либо когда они излучают свет, будучи достаточно нагретыми (как кусок раскаленного железа), либо когда они освещены и «рассеивают» (иными словами, возвращают) часть полученного света извне. Свет, попадающий в глаза, обычно полихроматичен, то есть содержит излучения с различными длинами волны в разных пропорциях. Эта композиция и определяет воспринимаемый нами цвет. Таким образом, объект, поглощающий все световое излучение, кажется черным; объект, излучающий электромагнитное излучение всех длин волн от 400 до 800 нм с сопоставимой интенсивностью, выглядит белым.

Подробнее...

В то время как предсказать цвет моря непросто, цвет неба в хорошую погоду легко объясняется физическими принципами, выявленными английским физиком лордом Рэйли (Рэлеем) (1842–1919). В отсутствие облаков цвет неба определяется результатом взаимодействия солнечного излучения с компонентами атмосферы Земли, а именно с неоднородностями (флуктуациями) плотности молекул азота и кислорода.

Подробнее...

Как можно увидеть на картине Рылова, облака бывают белые, серые или черноватые, в зависимости от их толщины и места, откуда их наблюдают. В любом случае они непрозрачны: солнце не видно сквозь облака, а солнечный свет оказывается более или менее интенсивным в зависимости от их толщины. Он доходит до нас, рассеянный каплями воды, из которых состоит облако. Такое рассеяние намного более интенсивно, чем рассеяние на флуктуациях плотности молекул кислорода и азота, которое мы описали выше. Почему?

Подробнее...

Без Луны ночное небо черное, с разрозненными звездами. Это кажется нормальным. Но в небе колоссальное количество звезд, может быть, даже бесконечное. Бесконечное число звезд должно производить бесконечное сияние. Что, если черное небо – признак конца Вселенной? Именно это предположил немецкий ученый Иоганн Кеплер в начале XVII века. В XIX веке другой немец, Генрих Ольберс, заметил, что ближайшие звезды, вероятно, скрывают более далекие, поэтому, даже если Вселенная бесконечна, ее светимость будет не бесконечной… но все же очень большой!

Подробнее...

Явление интерференции света было доказано в начале XIX века историческим опытом английского физика Томаса Юнга. Ученые той эпохи спорили о природе света: его интерпретировали или как волновое явление, что, казалось, подтвердил опыт Юнга, или как поток частиц. Далее мы увидим, что все они были правы.

Устройство Юнга (илл. 6) содержит точечный источник монохроматического света S, расположенный перед непрозрачной пластиной, в которой на расстоянии нескольких миллиметров друг от друга проделаны два отверстия чрезвычайно малого диаметра (порядка 0,1 мм). Свет, проходящий через отверстия, достигает экрана. И мы видим на нем – удивительно! – не сплошное пятно света, а пятно, демонстрирующее чередование темных и светлых полос. Как так получается?

Подробнее...

В начале XIX века все были уверены, что Земля шарообразна и вращается вокруг своей оси, но экспериментальных свидетельств этому не имелось. Первым неоспоримым доказательством этих фактов стал известный опыт Леона Фуко.

Вращение Земли вокруг своей оси объясняет многие явления, например из области метеорологии и океанографии. Чтобы понять природу этих явлений, нужно научиться их описывать теоретически. Для этого физики прибегают к использованию фиктивной силы, называемой именем Гаспара-Гюстава де Кориолиса.

Подробнее...

Представлять наблюдателя, неподвижного по отношению к звездам, чтобы понять, что видит его коллега, вращающийся вместе с Землей, неудобно. Проще было бы рассуждать только с точки зрения земного наблюдателя, предполагая, что на шар воздействует некая сила, которая заставляет его отклоняться к западу… И мы действительно можем так поступить! Для этого нужно рассматривать движение маятника Фуко в системе координат, или системе отсчета, связанной с Землей. Чтобы учесть вращение Земли вокруг своей оси, следует принять, что на шар, помимо сил веса и реакции нити (подвеса), воздействует еще одна сила. Ее назвали силой Кориолиса в честь французского математика Гаспара-Гюстава де Кориолиса (илл. 3).

Подробнее...

Еще одной «фиктивной» силой инерции является центробежная сила, проявления которой нам знакомы куда лучше, чем примеры воздействия силы Кориолиса. Она появляется в системе отсчета, вращающейся по отношению к неподвижным звездам, и стремится отбрасывать неподвижные в этой системе отсчета телá от центра вращения. В повседневной жизни эта сила позволяет нам, к примеру, отжимать белье в стиральной машине: вода выбрасывается наружу через дырки барабана. Мы ощущаем ее воздействие также при езде на мотоцикле (илл. 5) или в автобусе, когда он совершает крутой поворот и нас отбрасывает к внешней стороне виража, на соседа.

Подробнее...

Важным результатом воздействия силы Кориолиса является образование вихрей определенного направления вокруг любой зоны низкого или высокого давления (илл. 6). Можно было бы предположить, что воздушные массы напрямую движутся в зоны низкого давления (такие зоны называются «депрессией» и часто отмечаются буквой D на метеорологических картах). Однако на самом деле под действием силы Кориолиса ветры отклоняются. В Северном полушарии они закручиваются вокруг зоны низкого давления против часовой стрелки. В случае возникновения антициклонов (отмечаемых A) с зонами высокого давления в центре, ветры циркулируют по часовой стрелке. При этом в природе они никогда не образуют вихрь, полностью соответствующий изображенному на илл. 6; и все же мы можем утверждать, что в Северном полушарии ветры имеют низкое давление слева и высокое давление справа (илл. 7). В Южном же полушарии все происходит наоборот.

Подробнее...

Согласно закону Бэра, правый берег рек круче левого в Северном полушарии, противоположный эффект наблюдается в Южном. Это наблюдение было сделано для сибирских рек, Нила, Дуная… Объяснение этого явления связано с силой Кориолиса, которая заставляет течение реки отклониться к правому берегу (илл. 9). Из-за трения у берегов поток быстрее на поверхности, чем у дна реки, и, следовательно, сила Кориолиса также больше на поверхности. Это приводит к вертикальной циркуляции воды, которая способствует эрозии правого берега и появлению наносов на левом берегу. Процесс несколько напоминает механизм образования меандров. Однако при оценке воздействия силы Кориолиса мы обнаружим, что оно незначительно. По этой причине данную проблему, которая была предметом доклада Эйнштейна, а также многонедельного спора во Французской академии наук в 1859 году, все еще нельзя рассматривать как решенную.

Подробнее...

Говорят, что мореплаватель Пифей из Массалии (нынешний Марсель) в IV веке до нашей эры уже подозревал, что основная причина приливов – Луна: он заметил, что ритм приливов соответствует ее обращению вокруг Земли. Сегодня известно, что это явление действительно обусловлено воздействием на водоемы гравитационных сил Луны и Солнца. В этой главе мы подробно опишем движение вод при приливах и отливах.

Прилив – впечатляющее явление. В некоторых местах, например на берегах Ла-Манша (илл. 1), порой прилив может оказаться опасным для тех, кто рискует отправиться на прогулку по океанскому пляжу.

Подробнее...

Легенда гласит, что Ньютон открыл закон всемирного тяготения, когда отдыхал под яблоней и увидел падающее яблоко (илл. 2). Это, сказал он себе, доказательство того, что Земля воздействует на яблоко некоей силой притяжения. Очевидно, подобная сила действует не только на яблоко, но и на все находящиеся рядом с Землей объекты. Но почему только рядом с Землей? Ньютона посетила гениальная догадка: притяжение должно быть универсальным и, следовательно, осуществляться также между Солнцем и планетами, и – более общо – между всеми обладающими массой объектами!

Подробнее...

В отличие от яблока, Луна не падает на Землю, а Земля – на Солнце. Почему? Ведь закон всемирного тяготения работает также и в этих случаях. Чтобы понять причину, достаточно простого расчета, но, очевидно, этот парадокс казался невероятным многочисленным современникам Ньютона. Он остается немного удивительным и для нас; давайте вспомним, как он объясняется.

Если бы действие гравитационного притяжения Солнца на Землю внезапно прекратилось, то она, согласно принципу инерции, продолжила бы свой путь, равномерно удаляясь от Солнца по касательной к своей прежней орбите. Следовательно, именно притяжение Солнца не позволяет Земле удалиться от него, но этой силы недостаточно, чтобы заставить Землю на него «упасть».

Подробнее...

Для изучения приливов нужно учитывать взаимодействие между Землей, Луной и Солнцем, что требует чересчур сложных вычислений. Поэтому мы начнем с гипотетической ситуации, будто Луны не существует (чрезмерное допущение в случае приливов, но оно упростит объяснение), и рассмотрим Землю и Солнце как два отдельных тела.

Мы уже выяснили, что действующие на Землю центробежная и гравитационная силы уравновешивают друг друга. Это действительно так в центре Земли, но не на ее поверхности. В точке, наиболее близкой к Солнцу (точка A на илл. 4), расстояние D до Солнца наименьшее, следовательно, притяжение Солнца (пропорциональное 1/D2) сильнее, в то время как центробежная сила (пропорциональная D) слабее. Таким образом, равнодействующая сила направлена к Солнцу. Вода, находящаяся в точке A, притягивается к Солнцу – происходит прилив!

Подробнее...

Гениальная и простая, теория приливов Ньютона все же неспособна правильно предсказать их амплитуду. Их высота (разница уровня воды между приливом и отливом), согласно теории создателя классической механики, должна составлять всего несколько десятков сантиметров. В действительности же высота прилива на океанском побережье обычно достигает десятка метров. Кроме того, она значительно варьирует в зависимости от места, что нельзя объяснить теми аргументами, которые мы приводили ранее. Дело оказывается в том, что Ньютон предполагал поверхность океана всегда пребывающей практически в равновесии и смиренно повинующейся действующим на нее силам.

Подробнее...

Наблюдения показывают, что приливы по отношению к видимому движению Луны задерживаются примерно на 12 минут. Моделируя Землю и ее водные массивы в виде удлиненного эллипсоида, находим, что его бо́льшая ось направлена не точно на Луну, а составляет с направлением Земля – Луна угол φ порядка 3° (илл. 7). Действительно, вода из-за торможения ее движения трением о дно океанов и о берега не успевает в каждый момент времени занять самое энергетически выгодное положение. Это трение приводит к превращению части кинетической энергии вращения Земли в тепло. То есть приливы тормозят вращение Земли!

Подробнее...

Вода часто принимает форму капель диаметром приблизительно в один миллиметр. Достаточно внимательно понаблюдать за дождем, чтобы в этом убедиться. Почему так? Почему вода, помещенная в капельницу, выходит из нее только под действием небольшого давления и в виде почти идеально круглых капель четко определенного диаметра?

Минимизация потенциальной энергии и поверхностное натяжение

Любая система стремится минимизировать свою потенциальную энергию, то есть энергию, которой она обладает из-за своего положения в пространстве и внешних воздействий. В соответствии с этим принципом бильярдные шары падают в лунки, так же как иногда люди падают на льду: таким образом они уменьшают свою потенциальную энергию в гравитационном поле Земли.

Подробнее...

Бывают капли воды в воздухе и пузырьки воздуха в воде. Но можно создать и воздушные пузыри в воздухе – с помощью мыльного раствора воды! Он образует весьма устойчивые пузыри, которые невозможно было бы получить, используя чистую воду (илл. 4).

Молекулярная структура мыльной пленки – сама по себе урок физики. Мыло содержит так называемые поверхностно-активные вещества, молекулы которых характеризуются гидрофильной («любящей воду») головкой и гидрофобным («боящимся воды») хвостом. Чтобы удерживать головку в воде и хвосты вне воды, эти молекулы скапливаются у поверхности и выстраиваются перпендикулярно ей (илл. 5).

Подробнее...

Оставим мыльные пузыри и вернемся к каплям, а точнее – ко всем знакомой ситуации: неплотно закрытый кухонный кран подтекает, роняя капли через регулярные промежутки времени (илл. 11). Их падение происходит очень быстро, и мы невооруженным глазом не можем различить детали – они доступны только высокоскоростной камере. Однако, и не имея такой камеры, бельгийский физик Жозеф Плато (1801–1883) в XIX веке сумел подробно проанализировать форму этих капель. Опытный экспериментатор решил устранить действие силы тяжести – тогда падающие капли будут двигаться достаточно медленно и за ними можно будет проследить невооруженным глазом. Вместо того чтобы ронять капли воды в воздухе, он использовал другую, не смешиваемую с водой, жидкость с плотностью, близкой к плотности воды. В этом случае действующая на капли выталкивающая сила Архимеда почти полностью компенсирует их вес. И все происходит так, как будто капли освободились от действия гравитации.

Подробнее...

Первые наблюдения за распадом струи жидкости под влиянием звука были выполнены французским физиком Феликсом Саваром (1791–1841), чьим именем впоследствии была названа единица измерения, используемая для оценки высоты музыкальных нот. Ученый заметил, что возбуждение вблизи струи музыкального звука подходящей частоты усиливает ее фрагментацию: цилиндрическая часть струи практически исчезает, она начинает делиться на капли с самого верха. Согласно Савару, будущие капли начинают формироваться в струе уже сразу после ее выхода из крана. Поначалу это простые выпуклости, становящиеся все более и более выраженными по мере падения жидкости до точки, где они полностью разделяются. Эти близкие друг к другу выпуклости (илл. 12) производят слабый, но четко определенной частоты звук. Ученый предположил, что музыкальная нота, звучащая в унисон с этими колебаниями, оказывает особое влияние на струю и разрывает ее на вереницу капель!

Подробнее...

С течением времени на Земле установился климат, благоприятствующий для зарождения и дальнейшего существования жизни. Это заслуга и согревающего ее своими лучами Cолнца, и естественного парникового эффекта, и сложного динамического равновесия между океанами и атмосферой. В этой главе мы рассмотрим основные физические механизмы поддержания на земной поверхности температур, комфортных для человеческого организма. Однако производственная деятельность человека приобрела такие масштабы, что она уже не проходит бесследно для природы…

Подробнее...

В климатологии температура оказывается наиболее просто прогнозируемой физической величиной. Температура Земли зависит в первую очередь от тепла, которое она получает от Солнца и которое приводит в движение все механизмы формирования климата. Это тепло до нас доходит в виде электромагнитного излучения, частóты которого в основном находятся в видимой области спектра. Часть этого тепла Земля, излучая, в свою очередь, электромагнитные волны, возвращает обратно в космическое пространство. Однако ввиду того, что температура Земли гораздо ниже температуры Солнца, частóты излучаемых ею электромагнитных волн оказываются гораздо меньшими. Это – инфракрасное – излучение человек без специальных приборов не видит, и жить оно ему никак не мешает.

Подробнее...

Поиск

МАТЕМАТИКА

Блок "Поделиться"

 
 
Яндекс.Метрика Top.Mail.Ru

Copyright © 2021 High School Rights Reserved.